Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Laura E. Gordon and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(P-O) = 0.002 \text{ Å}$ R factor = 0.026 wR factor = 0.074 Data-to-parameter ratio = 26.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 26 April 2002

Accepted 7 May 2002

Online 17 May 2002

Ammonium zinc hydrogenphosphite hydrate, $(NH_4)_2Zn_5(HPO_3)_6\cdot 4H_2O$

The title compound contains HPO₃ pseudo-pyramids $[d_{av}(P - O) = 1.516 (2) \text{ Å}]$, ZnO₄ tetrahedra $[d_{av}(Zn - O) = 1.939 (2) \text{ Å}]$, and *trans*-ZnO₂(H₂O)₄ octahedra. These building units link together by way of Zn-O-P bridges $[\theta_{av} = 128.1^{\circ}]$, resulting in a layered structure.

Comment

Zinc (hydrogen)phosphites containing the $[HPO_3]^{2-}$ grouping have been less intensively studied than zinc phosphates. For example, in the August 2001 release of the inorganic crystal structure database (ICSD), there are 220 compounds containing Zn, P, and O, but only eight of these can be clearly identified as phosphites (Ortiz-Avila *et al.*, 1989; Shieh *et al.*, 1990; Durand *et al.*, 1992; Marcos *et al.*, 1993). In addition, we have recently reported the structure of NaZn(H₂PO₃)₃·H₂O (Ouarsal *et al.*, 2002).

The title compound (Fig. 1) contains ZnO₄ tetrahedra (Zn1and Zn2-centred groups), HPO₃ pseudo-pyramids and ZnO₂(H₂O)₄ octahedra (Zn3). The ZnO₄ groups $[d_{av}(Zn - O) = 1.939 (2) \text{ Å}]$ both make four links to nearby P atoms which form the centres of phosphite groups. The three phosphite moieties show their typical geometries $[d_{av}(P-O) =$ 1.516 (2) Å] and each makes three P–O–Zn links in pyramidal geometry. The fourth tetrahedral vertex is assumed to be a P–H bond (d = 1.32 Å), as invariably observed for phosphites (Ortiz-Avila *et al.*, 1989). The octahedral

Figure 1

Fragment of $(NH_4)_2Zn_5(HPO_3)_6\cdot 4H_2O$ (50% displacement ellipsoids, arbitrary spheres for the H atoms), showing the different polyhedra. Symmetry codes are as in Table 1.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Packing diagram for $(NH_4)_2Zn_5(HPO_3)_6$ -4H₂O in polyhedral representation, viewed approximately down [100]. Colour key: ZnO₄ tetrahedra yellow, HPO₃ tetrahedra red, ZnO₂(H₂O)₄ octahedra blue, and N atoms green.

Zn3O₂(H₂O)₄ group (Zn3 with site symmetry $\overline{1}$) makes two Zn-O-P links in *trans* configuration. The terminal Zn-OH₂ links are distinctly longer than the Zn-O(P) bonds. Of the 11 O atoms in the structure, nine (O1-O9) form bicoordinate P-O-Zn bridges [$\theta_{av} = 128.1^{\circ}$] and two (O10 and O11) are parts of water molecules. An extra-framework ammonium cation completes the structure. This species makes four N-H···O hydrogen bonds and has eight O atom neighbours within 3.5 Å [$d_{av}(N \cdots O) = 3.133$ (3) Å].

The polyhedral connectivity in (NH₄)₂Zn₅(HPO₃)₆·4H₂O can be decomposed into highly contorted 4-ring (four polyhedral building blocks with nodal atoms Zn1, Zn2, P1, and P2) ladders propagating along [001]. Similar ladders have been seen in β -C₂N₄H₄·ZnHPO₃ (Harrison *et al.*, 2001), although in this structure there are also ZnO₃N tetrahedra. In $(NH_4)_2Zn_5(HPO_3)_6\cdot 4H_2O$, the ladders are crosslinked in the [010] direction by the $[HP3O_3]^{2-}$ groups to result in macroanionic sheets of stoichiometry $[Zn_2(HPO_3)_3]^{2-}$. These sheets delimit two types of holes; a squashed 8-ring associated with the ammonium cation and a bifurcated 12-ring. The octahedral Zn3 moiety bridges across the 12 ring (Fig. 2) and intra-layer $Zn-OH_2\cdots O$ hydrogen bonds result (Table 2). An edge-on view of the layers (Fig. 3) shows the sheets propagating parallel to the (100) plane. Inter-sheet bonding between the formally neutral layers is by way of N-H···O hydrogen bonds and van der Waals forces.

Experimental

The title compound arose as a by-product of our studies of amino acid templated zinc phosphites: 1.462 g L-glutamine, 0.814 g ZnO, 0.82 g H_3PO_3 and 20 ml of water were mixed and left in a polypropylene bottle at 353 K for 4 d. Product recovery was by vacuum filtration and washing with cold water.

Crystal data

$(NH_4)_2Zn_5(HPO_3)_6\cdot 4H_2O$
$M_r = 457.43$
Triclinic, $P\overline{1}$
a = 7.2263 (3) Å
b = 9.7728 (4) Å
c = 10.2349 (5) Å
$\alpha = 63.409 \ (1)^{\circ}$
$\beta = 87.162 \ (1)^{\circ}$
$\gamma = 72.969 \ (1)^{\circ}$
$V = 615.18 (5) \text{ Å}^3$

Z = 2

 $D_{\rm r} = 2.469 {\rm Mg m}^{-3}$

Chunky plate, colourless $0.39 \times 0.28 \times 0.13 \text{ mm}$

3646 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation Cell parameters from 3972

reflections $\theta = 2.5-32.4^{\circ}$ $\mu = 5.29 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int}=0.013$

 $\theta_{\rm max} = 32.5^{\circ}$

 $h = -10 \rightarrow 9$

 $k = -13 \rightarrow 14$

 $l = -15 \rightarrow 15$

Intensity decay: none

Data collection

Bruker SMART 1000 CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{min} = 0.232, T_{max} = 0.547$ 6425 measured reflections 4274 independent reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.027$ where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.074$ $(\Delta/\sigma)_{max} = 0.001$ S = 1.02 $\Delta\rho_{max} = 0.74 \text{ e Å}^{-3}$ 4274 reflections $\Delta\rho_{min} = -0.64 \text{ e Å}^{-3}$ 161 parametersExtinction correction: SHELXL97H-atom parameters constrainedExtinction coefficient: 0.0101 (10)

Table 1

Selected geometric parameters (Å, °).

Zn1-O6	1.9283 (16)	Zn3-O11 ^{iv}	2.166 (2)
Zn1-O2 ⁱ	1.9325 (15)	Zn3-O11	2.166 (2)
Zn1-O1	1.9462 (17)	P1-O3	1.5050 (17)
Zn1–O8 ⁱⁱ	1.9583 (15)	P1-O2	1.5140 (16)
Zn2–O3 ⁱⁱⁱ	1.9079 (16)	P1-O1	1.5260 (17)
Zn2-O4	1.9365 (15)	P2-O6	1.5104 (18)
Zn2-O7	1.9480 (14)	P2-O4	1.5114 (16)
Zn2–O5 ⁱⁱⁱ	1.9529 (17)	P2-O5	1.5281 (16)
Zn3–O9 ^{iv}	2.0014 (14)	P3-O9	1.5079 (16)
Zn3–O9	2.0014 (14)	P3-O7	1.5197 (15)
Zn3-O10	2.1290 (19)	P3-O8	1.5219 (15)
$Zn3-O10^{iv}$	2.1290 (19)		
P1-O1-Zn1	127.86 (10)	P2-O6-Zn1	125.97 (10)
P1-O2-Zn1 ⁱ	129.28 (10)	P3-O7-Zn2	124.65 (8)
P1-O3-Zn2 ⁱⁱⁱ	128.74 (11)	P3-O8-Zn1 ^v	119.29 (9)
P2-O4-Zn2	127.96 (10)	P3-O9-Zn3	143.17 (12)
P2-O5-Zn2 ⁱⁱⁱ	126.35 (10)		

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 + y, z; (iii) 1 - x, 1 - y, -z; (iv) 1 - x, -y, 1 - z; (v) x, y - 1, z.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H4 \cdots O8^{i}$	0.95	1.96	2.904 (2)	170
$N1 - H5 \cdots O9^{ii}$	0.80	2.23	3.035 (3)	174
N1-H6···O5 ⁱⁱⁱ	0.87	2.00	2.865 (3)	173
N1-H7···O7	0.95	1.94	2.887 (2)	172
O10−H8···O1 ^{iv}	0.77	2.31	3.022 (3)	154
O10−H9···O4	0.96	2.08	3.004 (3)	162
O10−H9···O6	0.96	2.38	3.069 (3)	129
O11−H10···O2	0.81	2.00	2.742 (2)	153
O11−H11···O4	1.10	2.43	3.410 (3)	148

Symmetry codes: (i) -x, -y, -z; (ii) 1 - x, -y, -z; (iii) x, y - 1, z; (iv) 1 - x, 1 - y, 1 - z.

Figure 3

Packing diagram for $(NH_4)_2Zn_5(HPO_3)_6$ - $4H_2O$ in polyhedral representation, viewed approximately down [001]. Colour key is as in Fig. 2.

Fourier difference peaks for the water molecule H atoms were barely above background noise level and the locations of these atoms should be regarded as uncertain. Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

The authors thank John Storey for useful discussions.

References

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Durand, J., Cot, L., Sghyar, M. & Rafiq, M. (1992). Acta Cryst. C48, 1171–1173. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenoff, T. M. (2001). *Inorg. Chem.* 40, 895–899.

Marcos, M. D., Amoros, P. & Le Bail, A. (1993). J. Solid State Chem. 107, 250– 257.

Ortiz-Avila, C. Y., Squattrito, P. J., Shieh, M. & Clearfield, A. (1989). Inorg. Chem. 28, 2608–2615.

Ouarsal, R., Tahiri, A. A., El Bali, B., Lachkar, M. & Harrison, W. T. A. (2002). *Acta Cryst.* E58, i23–i25.

Shieh, M., Martin, K. J., Squattrito, P. J. & Clearfield, A. (1990). *Inorg. Chem.* **29**, 958–963.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.